3.3.44 \(\int \frac {1}{(e \sec (c+d x))^{7/2} (a+i a \tan (c+d x))^2} \, dx\) [244]

Optimal. Leaf size=181 \[ \frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \sec (c+d x)}}{7 a^2 d e^4}+\frac {2 e \sin (c+d x)}{15 a^2 d (e \sec (c+d x))^{9/2}}+\frac {6 \sin (c+d x)}{35 a^2 d e (e \sec (c+d x))^{5/2}}+\frac {2 \sin (c+d x)}{7 a^2 d e^3 \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{15 d (e \sec (c+d x))^{11/2} \left (a^2+i a^2 \tan (c+d x)\right )} \]

[Out]

2/15*e*sin(d*x+c)/a^2/d/(e*sec(d*x+c))^(9/2)+6/35*sin(d*x+c)/a^2/d/e/(e*sec(d*x+c))^(5/2)+2/7*sin(d*x+c)/a^2/d
/e^3/(e*sec(d*x+c))^(1/2)+2/7*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(
1/2))*cos(d*x+c)^(1/2)*(e*sec(d*x+c))^(1/2)/a^2/d/e^4+4/15*I*e^2/d/(e*sec(d*x+c))^(11/2)/(a^2+I*a^2*tan(d*x+c)
)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3581, 3854, 3856, 2720} \begin {gather*} \frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \sec (c+d x)}}{7 a^2 d e^4}+\frac {2 \sin (c+d x)}{7 a^2 d e^3 \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{15 d \left (a^2+i a^2 \tan (c+d x)\right ) (e \sec (c+d x))^{11/2}}+\frac {2 e \sin (c+d x)}{15 a^2 d (e \sec (c+d x))^{9/2}}+\frac {6 \sin (c+d x)}{35 a^2 d e (e \sec (c+d x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((e*Sec[c + d*x])^(7/2)*(a + I*a*Tan[c + d*x])^2),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[e*Sec[c + d*x]])/(7*a^2*d*e^4) + (2*e*Sin[c + d*x])/(15*a
^2*d*(e*Sec[c + d*x])^(9/2)) + (6*Sin[c + d*x])/(35*a^2*d*e*(e*Sec[c + d*x])^(5/2)) + (2*Sin[c + d*x])/(7*a^2*
d*e^3*Sqrt[e*Sec[c + d*x]]) + (((4*I)/15)*e^2)/(d*(e*Sec[c + d*x])^(11/2)*(a^2 + I*a^2*Tan[c + d*x]))

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3581

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Dist[d^2*((m - 2)/(b^2*(m + 2*n)
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {1}{(e \sec (c+d x))^{7/2} (a+i a \tan (c+d x))^2} \, dx &=\frac {4 i e^2}{15 d (e \sec (c+d x))^{11/2} \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {\left (11 e^2\right ) \int \frac {1}{(e \sec (c+d x))^{11/2}} \, dx}{15 a^2}\\ &=\frac {2 e \sin (c+d x)}{15 a^2 d (e \sec (c+d x))^{9/2}}+\frac {4 i e^2}{15 d (e \sec (c+d x))^{11/2} \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {3 \int \frac {1}{(e \sec (c+d x))^{7/2}} \, dx}{5 a^2}\\ &=\frac {2 e \sin (c+d x)}{15 a^2 d (e \sec (c+d x))^{9/2}}+\frac {6 \sin (c+d x)}{35 a^2 d e (e \sec (c+d x))^{5/2}}+\frac {4 i e^2}{15 d (e \sec (c+d x))^{11/2} \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {3 \int \frac {1}{(e \sec (c+d x))^{3/2}} \, dx}{7 a^2 e^2}\\ &=\frac {2 e \sin (c+d x)}{15 a^2 d (e \sec (c+d x))^{9/2}}+\frac {6 \sin (c+d x)}{35 a^2 d e (e \sec (c+d x))^{5/2}}+\frac {2 \sin (c+d x)}{7 a^2 d e^3 \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{15 d (e \sec (c+d x))^{11/2} \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {\int \sqrt {e \sec (c+d x)} \, dx}{7 a^2 e^4}\\ &=\frac {2 e \sin (c+d x)}{15 a^2 d (e \sec (c+d x))^{9/2}}+\frac {6 \sin (c+d x)}{35 a^2 d e (e \sec (c+d x))^{5/2}}+\frac {2 \sin (c+d x)}{7 a^2 d e^3 \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{15 d (e \sec (c+d x))^{11/2} \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{7 a^2 e^4}\\ &=\frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \sec (c+d x)}}{7 a^2 d e^4}+\frac {2 e \sin (c+d x)}{15 a^2 d (e \sec (c+d x))^{9/2}}+\frac {6 \sin (c+d x)}{35 a^2 d e (e \sec (c+d x))^{5/2}}+\frac {2 \sin (c+d x)}{7 a^2 d e^3 \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{15 d (e \sec (c+d x))^{11/2} \left (a^2+i a^2 \tan (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.09, size = 151, normalized size = 0.83 \begin {gather*} -\frac {(e \sec (c+d x))^{5/2} \left (296 i+228 i \cos (2 (c+d x))-72 i \cos (4 (c+d x))-4 i \cos (6 (c+d x))+480 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (\cos (2 (c+d x))+i \sin (2 (c+d x)))-17 \sin (2 (c+d x))+128 \sin (4 (c+d x))+11 \sin (6 (c+d x))\right )}{1680 a^2 d e^6 (-i+\tan (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Sec[c + d*x])^(7/2)*(a + I*a*Tan[c + d*x])^2),x]

[Out]

-1/1680*((e*Sec[c + d*x])^(5/2)*(296*I + (228*I)*Cos[2*(c + d*x)] - (72*I)*Cos[4*(c + d*x)] - (4*I)*Cos[6*(c +
 d*x)] + 480*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*(Cos[2*(c + d*x)] + I*Sin[2*(c + d*x)]) - 17*Sin[2*(
c + d*x)] + 128*Sin[4*(c + d*x)] + 11*Sin[6*(c + d*x)]))/(a^2*d*e^6*(-I + Tan[c + d*x])^2)

________________________________________________________________________________________

Maple [A]
time = 1.27, size = 252, normalized size = 1.39

method result size
default \(\frac {2 \left (\cos ^{3}\left (d x +c \right )\right ) \left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \left (-1+\cos \left (d x +c \right )\right )^{2} \left (1+\cos \left (d x +c \right )\right )^{2} \left (14 i \left (\cos ^{8}\left (d x +c \right )\right )+14 \sin \left (d x +c \right ) \left (\cos ^{7}\left (d x +c \right )\right )+7 \sin \left (d x +c \right ) \left (\cos ^{5}\left (d x +c \right )\right )+15 i \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+9 \sin \left (d x +c \right ) \left (\cos ^{3}\left (d x +c \right )\right )+15 i \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+15 \sin \left (d x +c \right ) \cos \left (d x +c \right )\right )}{105 a^{2} d \,e^{7} \sin \left (d x +c \right )^{4}}\) \(252\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

2/105/a^2/d*cos(d*x+c)^3*(e/cos(d*x+c))^(7/2)*(-1+cos(d*x+c))^2*(1+cos(d*x+c))^2*(14*I*cos(d*x+c)^8+14*sin(d*x
+c)*cos(d*x+c)^7+7*sin(d*x+c)*cos(d*x+c)^5+15*I*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos
(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)+9*sin(d*x+c)*cos(d*x+c)^3+15*I*(1/(1+cos(d*x+c)))^(1/2)*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)+15*sin(d*x+c)*cos(d*x+c))/e^7/sin(d*x+
c)^4

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.13, size = 139, normalized size = 0.77 \begin {gather*} \frac {{\left (-960 i \, \sqrt {2} e^{\left (8 i \, d x + 8 i \, c\right )} {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right ) + \frac {\sqrt {2} {\left (-15 i \, e^{\left (12 i \, d x + 12 i \, c\right )} - 200 i \, e^{\left (10 i \, d x + 10 i \, c\right )} + 245 i \, e^{\left (8 i \, d x + 8 i \, c\right )} + 592 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 211 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 56 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 7 i\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-8 i \, d x - 8 i \, c - \frac {7}{2}\right )}}{3360 \, a^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

1/3360*(-960*I*sqrt(2)*e^(8*I*d*x + 8*I*c)*weierstrassPInverse(-4, 0, e^(I*d*x + I*c)) + sqrt(2)*(-15*I*e^(12*
I*d*x + 12*I*c) - 200*I*e^(10*I*d*x + 10*I*c) + 245*I*e^(8*I*d*x + 8*I*c) + 592*I*e^(6*I*d*x + 6*I*c) + 211*I*
e^(4*I*d*x + 4*I*c) + 56*I*e^(2*I*d*x + 2*I*c) + 7*I)*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))*e
^(-8*I*d*x - 8*I*c - 7/2)/(a^2*d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*sec(d*x+c))**(7/2)/(a+I*a*tan(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(e^(-7/2)/((I*a*tan(d*x + c) + a)^2*sec(d*x + c)^(7/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{7/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e/cos(c + d*x))^(7/2)*(a + a*tan(c + d*x)*1i)^2),x)

[Out]

int(1/((e/cos(c + d*x))^(7/2)*(a + a*tan(c + d*x)*1i)^2), x)

________________________________________________________________________________________